MMAX2 Annotation Tool
Style Sheet Guide

© Christoph Muller
EML Research gGmbH
http://mmax.eml-research.de

1st February 2005

Contents
About this Document 2
Introduction 3
Simple Style Sheets 5
3.1 ABasicStyleSheetTemplate. e 5
More Complex Style Sheets 7
4.1 AccessingMarkables 7
4.2 Adding Simple Markable Handles 7
4.3 Structuringthe Display 10
4.4 Adding Textual Markable Handles 14
441 Plain . .. 14
442 MOreFanCy o i e 15
4.5 More Flexible Style Sheets (updated forversion1.0beta4) 16
Function Reference (updated for version 1.0 beta 4) 18
5.1 SystemFunctions 18
5.2 Control Functions (updated for version 1.0beta4) 18
5.3 Functions for Setting Font Attributes 19
5.4 Markable-Related Functions 19
5.4.1 Markable-Returning Functions 19
5.4.2 Functions for Adding Markable Handles 20
21

543 OtherFunctions. e

1 About this Document

This document describes how XSL style sheets are used to create the display of the MMAX2 annotation
tool. Though writing a style sheet for this purpose is pretty simple, a certain familiarity with XSL is as-
sumed. This document describes mainly those points in which MMAX2 style sheets are different from
‘regular’ style sheets. In addition to what is detailed in this document, the whole range of XSL functions
can be used anywhere in a MMAX2 style sheet. Also, the functionality described here is not considered to
be complete. Rather, additional functions are likely to be added in the future. If you have suggestions, we
would like to hear from you!

Important Note: The version of MMAX2 that accompanies this document (1.0 BETA 3 or later) intro-
duces considerable changes to the MMAX2 style sheet engine and the methods supported by it. These
changes have been implemented in order to optimize and simplify the use of style sheets. They also render
superfluous the base datasentences and<turns> files that earlier versions required (cf. Section 2). As

a consequence, style sheets from earlier releases (up to and including 1.0 BETA 2), including the ones sup-
plied as samples, will probably not work any more. The sample files supplied with the latest distribution of
MMAX2 have been updated to not use deprecated functionalities any more. If you have written your own
style sheets and run into problems now, please write to mmax@eml-research.de, and we will be happy to
assist you!

2 Introduction

The MMAX2 annotation tool uses XSL stylesheets to create different display renderings\gr for a

given set of base data files and annotation levels. Depending on the degree of sophistication and the number
of annotation levels, an XSL style sheet might become rather complex. On the other hand, a basic display
can be created with just a few lines.

The style sheets that have have been defined for a given document are associated with this document
through the commampaths.xml file that has to be present in the root directory of every annotation project

(or set of projects). In thecviews> Section of this file, there is one reference to every defined style sheet
file. Since references to style sheets are defined in the conpatis.xml file (and not in each .mmax

file individually), adding one reference to this file is sufficient to make a new style sheet accessible for all
.mmax files in the annotation project. The first style sheet inthiews> Section is thelefaultstyle sheet

that is always loaded when a .mmax file is loaded. After that, the available style sheets can be found by
selecting in the 'Markable level control panel’ the menu 'Settings’ and then the menu item ’'Style Sheet'.
Note: This will probably change in a later version, since the 'Markable level control panel’ is likely to be
abandoned. If more than one style sheet is available, the display can be changed by selecting a different
one. The style sheet currently in use can be reapplied (e.g. after it was modified) by selecting in the main
window the 'Display’ menu and then the 'Reapply current style sheet’ menu item. Note that this means
that style sheets can be modified and tested interactively without the need to reload the entire .mmax file.
The tool and the style sheet engine is also sufficiently robust to handle even serious style sheet errors: If
a style sheet crashes after modification and reapplication, simpy undo the last change, save the style sheet
again, and again reapply it. In most cases, the tool will recover from the style sheet crash without need to
restart.

The fact that MMAX2 does support multiple levels of annotation (as opposed to the first version which
supported only one such level) means that the once obligatsgntences or <turns> base data files

can be abandoned in favour of an additional markable level. The fact that one of both files was required
as part of the base data was a nuisance in earlier versions of MMAX, since sentence and particularly turn
segmentation was simply not always available a priori, i.e. before starting the annotation. A common work-
around was to use a dummysentences or <turns> file which contained only one entry, spanning the

entire discourse.

From this version on, both files are optional, meaning that bothentences and the<turns> entry

in a .mmax file can remain empty. Instead, an additional markable level can be defined, which has the
advantage that sentence or turn segmentation can be done using the tool, i.e. as part of the annotation
proper, rather than prior to the annotation. Already existisgntences or <turns> files can easily be
converted into markable filesby

e renaming the elements (incl. their ID namespaces) fsentence orturn tomarkable |,

¢ replacing the root element with @markables- element, including a proper namespace @en-
tencesor turns),

e adding a markables doctype declaration, including a SYSTEM reference to the file markables.dtd,
and

e adding a reference to the new markable layer to the .mmax file.

This document uses for illustration purposes the sample data supplied with this distribution. This data
follows the data format that is now favoured, and the style sheets described in the following are slightly

incompatible with earlier versions.

3 Simple Style Sheets

3.1 A Basic Style Sheet Template

The most basic MMAX2 style sheet is one that simply outputs the base data, i.e. the text that is represented
in the <word> elements in the base data words.xml file. More complex style sheets (described later)
include ones that add line breaks, markable handles or markable attribute values at certain positions. Note,
however, that the style sheet is NOT responsible for specifying e.g. the font color for markables: This is
the domain of markable customizations. As a rule of thumb, style sheets are responsible for the display
layout i.e. what appears where, while markable customizations are responsihteafthings appear, i.e.

using which font attributes.

Each MMAX2 style sheet must hawt leastthe following elements:

<xsl:stylesheet xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:mmax="org.eml.MMAX2.discourse. MMAX2DiscourseLoader"
version="1.0">

<xsl:output method="text" indent="no" omit-xml-declaration="yes"/>

<xsl:strip-space elements=" * ">

<xsl:template match="words">

<xsl:apply-templates/>
</xsl:template>
</xsl:stylesheet>

The <xsl:stylesheet tag does not only define the standard xsl name space (first argument), but also the
mmax name space (second argument), which is associated with the name of a MMAX2 Java class. This
name space is required to enable the style sheet to execute the Java methods that MMAX2 needs when
building the display. The<xsl:output- tag mainly specifies that the style sheet should produce plain
text without any indentations or markup. Thesl:strip-space tag makes sure that white space and line
breaks from the base data and annotation level xml files do not show up in the display. Finally, there is
one <xsl:template- element to match the root node of the document submitted to the style sheet (i.e. the
parsed base data words.xml file). This template is matched only once, anéxslliapply-templates?

for each of its childern, i.e. for every individual word in the base data.

The above style sheet will not yet produce any output (and probably even throw some non-critical errors).
In order to actually let text appear in the display,<axsl:template- element for elements of typeword>

has to be added. The minimal form that this template can take is the following:

<xsl:template match="word">

<xsl:value-of select="mmax:registerDiscourseElement(@id)"/>
<xsl:value-of select="mmax:setDiscourseElementStart()"/>
<xsl:apply-templates/>

<xsl:value-of select="mmax:setDiscourseElementEnd()"/>
<xsl:text> </xsl:text>

</xsl:template>

1As will become clear later, this division of labour is not really strict, because the font attributitefak text inserted into the
display are specified by the style sheet inserting it.

2For those interested, this is the major point of difference between this and earlier versions of MMAX: Earlier ver-
sions, which still required a<sentences or <turns> file would match this elements, calling the now deprecated method
mmax:getDiscourseElementsAsNodes(String ID) for each sentence or turn.

The first line in the<word> template must be a call to mmax:registerDiscourseElement(String ID). The
above template demonstrates the easiest way to realize this call, i.es&léhe part of a<xsl:value-of>
instruction. Although this instruction is normally used to insert text into the style sheet output stream (i.e.
in the result of the transformation), it can also be used like this if the function that is called simply does not
return anything. The next three lines are responsible for adding the actual word string to the display. The
middle line simply calls<xsl:apply-templatesf for the current<word> element’s textual child, causing

the text string of this child to be inserted into the display. This call has to be immediately surrounded by
calls to mmax:setDiscourseElementStart() and mmax:setDiscourseElementEnd(), respectively. These calls
create an association between the current element’s ID and the portion of the display that contains the string
of this element’s textual child. The last line in the template inserts a space separator directly after the word
just added. When applied to the sample HTC data, the above minimal MMAX2 style sheet produces the
display shown in Figure 1. The source code for the above style sheet can be found in_filgshtihe

£ MMAX2 1.0 BETA 3 Samples' HTC,002_htc_abr o]
File Settings Display Tools Info

Das Stadttheater . Im Gegensatz zu anderen Stadten steht das Heidelberger
Stadttheater nicht an herausgehohener Stelle | sondern es fugt sich in die
Straenflucht ohne “orplatz ein . Der Haupteingang zeigt noch das alte
Arkadenmotiy mit den flachen Segmentbdgen . Erst 1874 Gbernahm die
Stadt das bis dahin won einer privaten Initiative getragene Theater . Es
wurde in der Folge stark verandert . Mach dem Innen-Umkbau won 1880 durch
Hermann Behadel gestaltete Fritz Haller 1924 das Haus erneut um . Trotz
Aufstockung und Yerbreiterung im Stil des Neoklassizismus wurden aber
Teile der Stradenfassade erhalten . 1390 wurde seitlich ein glasernes Foyer
won Rudolf Biste und Kurt Gerling angebaut

Figure 1: MMAX2 display with minimal output

Styles folder of the HTC sample data. Note that for the above screen shot (and for all following ones,
unless otherwise noted), markable customizations have been switcHed off.

3Markable customizations can be deactivated for a level by unchecking the box at the right of the Validate button in the 'Markable
level control panel'.

4 More Complex Style Sheets

Most displays (except for the most simple ones) will have to incorporate somehow information about the
actual annotation that is available for a given set of base data elements. In order to do that, they have to
access markables, since markables are the carriers of annotation information.

4.1 Accessing Markables

MMAX2 is a multi-level annotation tool. Therefore, several levels of annotation do normally exist, each

of which resides in a separate xml file. In order for the style sheet to be able to distinguish markables
from different levels, each level has to be associated with an xsl name space, which is normally the
name of the annotation level as defined in the .mmax file. A markable level is associated with a name
space by adding a name space declaration to the<owdrkables- element in the markable xml file.

In the HTC sample data, e.g., the markables from dbeef level have the root elementmarkables
xmIns="www.eml.org/NameSpaces/coref'the markables from theentencekevel have the root element
<markables xmIns="www.eml.org/NameSpaces/sentences”

The name space of each markable level to be accessed in a style sheet has to be declared in the style sheet
header. This is done by adding lineso the <xsl:stylesheet element, like this:

<xsl:stylesheet xmins:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:mmax="org.eml.MMAX2.discourse. MMAX2DiscourseLoader"
xmins:coref="www.eml.org/NameSpaces/coref"
xmins:sentences="www.eml.org/NameSpaces/sentences"
version="1.0">

In a style sheet like this, markable elements from different levels can be distinguished by prepending their
associated name space to the generic 'markable’ element name: coref:markable vs. sentences:markable.

4.2 Adding Simple Markable Handles

One of the most useful ways to incorporate markables into the display is by addirigable handles

These markable handles surround a markable and allow its immediate selection, which is particularly useful
in cases of multiple embedding. In addition, they also nicely visualize the extent of a markable. By default,
they are mouse-sensitive, i.e. when the mouse pointer rests over a markable handle, the matching handle
will be highlighted?

Adding handles for markables from a particular level requires two things<Ksktemplate- for <word>

elements has to be slightly modified, and templates for actually adding the handles have to be written.

The first step consists of adding two instructions, like in the following:

<xsl:template match="word">

<xsl:value-of select="mmax:registerDiscourseElement(@id)"/>

<xsl:apply-templates select="mmax:getStartedMarkables(@id)" mode="opening"/>
<xsl:value-of select="mmax:setDiscourseElementStart()"/>
<xsl:apply-templates/>
<xsl:value-of select="mmax:setDiscourseElementEnd()"/>

4In fact, pairs of handles withlwaysbe highlighted if the mouse pointer rests over a position thahiguely associatedith a
markable. This is true for all markable handles, but also if only one markable level with only one markable exists at a given position.

<xsl:apply-templates select="mmax:getEndedMarkables(@id)" mode="closing"/>
<xsl:text> </xsl:text>
</xsl:template>

As the names suggest, each of the inserted instructions returns a node set of markables that start or end
at the respective position. Note that the calls have to be added exactly as shown above, i.e. immediately
before mmax:setDiscourseElementStart() and after mmax:setDiscourseElementEnd(). Alsomotiethe
argument, which is important to select the correct template to match the started or ended markable nodes
(cf. below).

What remains to be done is addirgsl:template- elements to actually match the markables returned by

the calls to mmax:getStartedMarkables(String ID) and mmax:getEndedMarkables(String ID).

The domain of a template, i.e. the set of elements to which it is to apply, is determined by the template’s
match argument. For markables from tleref level, this is coref:markables. In order to further distin-
guish between templates for starting and ending markables, the temptaigésargument is used, which

is set toopening or closing , just like in the corresponding calls in thexsl:template- for <word>
elements, cf. above. Thus, the most simple markable handles are created with the following pair of tem-
plates:

<xsl:template match="coref:markable" mode="opening">
<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level, @id, '[)"/>
</xsl:template>

<xsl:template match="coref:markable" mode="closing">
<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level, @id, T)"/>
</xsl:template>

This will produce a display with simple markable handles as shown in Figure 2.

£ MMAX2 1.0 BETA 3 SamplesyHTC,002_htc_abn.mma o [m] B3]

File Settings Display Tools Info

[Das Stadttheater] . Im Gegensatz zu [anderen Stadten)] stent [das Heidelberger
Stadttheater] nicht an [herausgehobener Stelle] |, sondern [es] figt sich in [die
Strafenflucht] ohne Worplatz] ein .IDer Haupteingangl zeigt noch [das alte
Arkadenmaotiv mit [den flachen Segmentbogen]] . Erst [kd74] Obernahm [die Stadt]
[das his dahin von [einer privaten Initiative] getragene Theater] . [Es] wurde in der
Folge stark verandert . Mach [dem Innen-Umbau von [1880] durch [Hermann
Behagel]] gestaltete [Fritz Haller] [1924] [das Haus] erneut um . TroE
[Aufstockung und [Verbreiterung [im Stil [des Meoklassizismus]]]] wurden aber
[Teile [der Straienfassade]] erhalten . [1990] wurde seitlich [ein glasernes Foyer)
von [[Rudaolf Biste] und [Kurt Gerling]] angebaut .

Figure 2: MMAX2 display with simple markable handles

The source code for the above style sheet can be found in fil2.két theStyles folder of the HTC
sample data. Note that opening and closing handles are automatically inserted in the correct embedding
order, i.e. the handle that is opened first is closed last.

The actual string that is used for the handle can be specified in the last parameter of the mmax:addXMarkableHandle(.
call. Note that using a string with more than one character is also possible, creating a correspondingly

longer handle. However, while markable handles are mouse-sensitive over their entire length (cf. above),

only the leftmost and rightmost characters of left and right handles, respectively, will be highlighted when

the mouse pointer rests over a hartidote also that, in contrast to e.g. the call to mmax:registerDiscourseElement(Strin
ID), the calls for adding markable handles actually do return a string, which is then inserted into the display.

Since markable handles constitliteral text (as opposed to text from the base data), their font attributes

have to be set by the style sheet inserting them. Font attributes for literal text (not just markable handles)

can be set using the methods described in Section 5.3. Generally, text to which attributes are to be applied

must be surrounded by a pair of calls to the respective start/ end methods. Thus, in order to let the markable

handles appear in bold font, the following modifications to the above templates are necessary:

<xsl:template match="coref:markable" mode="opening">
<xsl:value-of select="mmax:startBold()"/>
<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level, @id, [)"/>
<xsl:value-of select="mmax:endBold()"/>
</xsl:template>

<xsl:template match="coref:markable" mode="closing">
<xsl:value-of select="mmax:startBold()"/>
<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level, @id, T)"/>
<xsl:value-of select="mmax:endBold()"/>
</xsl:template>

This will produce the display with bold markable handles shown in Figure 3).

£ MMAx2 1.0 BETA 3 Samples'HTC,002_htc_abn.mmax o [=] 3]

File Settings Display Tools Info

[Das Stadttheater] . Im Gegensatz zu [anderen Stadten] steht [das Heidelberger
Stadttheater] nicht an [herausgehobener Stelle] | sondern [es] fagt sich in [die
Straenflucht] chne [YVorplatz] ein .IDEI’ Haupteingang§ zeigt nach [das alte
Arkadenmotiv mit [den flachen Segmentbdgen]] . Erst ['r874] Obernahm [die
Stadt] [das bis dahin won [einer privaten Initiative] getragene Theater] . [Es]
wurde in der Folge stark wverandert . Mach [dem Innen-Umbau won [1830] durch
[Hermann Behagel]] gestaltete [Fritz Haller] [1924] [das Haus] erneut um . Trote
[Aufstockung und [Werbreiterung [im Stil [des Neoklassizismus]]]] wurden aber
[Teile [der Straizenfassade]] erhalten . [1990] wurde seitlich [ein glasernes
Foyer] won [[Fudolf Biste] und [Kurt Gerling]] angebaut .

Figure 3: MMAX2 display with simple markable handles in bold font

The source code for the above style sheet can be found in fil8.két theStyles folder of the HTC
sample data. By default, markable handles will always appear in black. Different colours can be defined
by means of markable customizations, by defining an appropriate patterpgttegn=" {all }") and

5This holds for the simple versions of the addXMarkableHandle(...) methods only. Section 4.4 describes methods that allow to
override this behaviour.

using the formahandles= colour in the style string (e.gstyle="handles=yellow"). Note that
this mechanism is flexible and powerful enough to also have attribute-dependent markable handle colours.
Note also that only handieolourscan be set this way.

4.3 Structuring the Display

A second major use of incorporating markables into the display is by using them to put the display text in a
particular structure. Structuring can be as simple as adding a line break after every sentence, or visualizing
the turn and utterance structure of a spoken dialogue. Adding line breaks is simply done by writing a
template that adds a line break after eaehtencenarkable. This can be done like this:

<xsl:template match="sentence:markable" mode="closing">
<xsl:text>

</xsl:text>

</xsl:template>

This will produce the output in Figure 4. The source code for the above style sheet can be found in file

& MMAX2 1.0 BETA 3 samples'HTC 002 htc_abn.mmax] = IEllil

File Settings Display Tools Info

Das Stadttheater

Im Gegensatz zu anderen Stadten steht das Heidelberger Stadttheater nicht an
herausgehobener Stelle | sondern es flgt sich in die Stradenflucht chne Yorplatz ein .

Der Haupteingang zeigt noch das alte Arkadenmotiyvy mit den flachen Segmentbdgen .

Erst 1874 Obernahm die Stadt das bis dahin von giner privkn Initiative getragene Theater .
Es wurde in der Folge stark werdandert .

Mach dem Innen-Umbau won 1880 durch Hermann Behagel gestaltete Fritz Haller 1924 das
Haus erneut um .

Trotz Aufstockung und werbreiterung im Stil des Neaklassizismus wurden aber Teile der
Strazenfassade erhalten .

1990 wurde seitlich ein gldsernes Foyer van Rudolf Biste und Kurt Gerling angebaut

Figure 4: MMAX2 display with sentences separated by line breaks

htc_4.xsl theStyles folder of the HTC sample data.

A more refined layout with the first line (i.e. the head line) set off with an extra empty line can also be
created by using the fact that the first markable in the sample file (and in all other files from the HTC, for
that matter) has a particular id.

<xsl:template match="sentence:markable" mode="closing">
<xsl:choose>
<xsl:when test="@id="markable_1"">
<xslitext> <!-- Add extra line break after sentence markable with id markable 1 -->

</xsl:text>

</xsl:when>
<xsl:otherwise>

10

<xsl:text> <!-- Add normal line break only after all other sentence markables -->
</xsl:text>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

This is also a good example for how standard XSL control structures can be used for creating MMAX2
displays. The output of the above template looks as in Figure 5: The source code for the above style sheet

& MMAX2 1.0 BETA 3 Samples'HTC 002 htc abn.mmax i & IEIllj

File Settings Display Tools Info

Das Stadttheater .

Im Gegensatz zu anderen Stadten steht das Heidelberger Stadttheater nicht an
herausgehobener Stelle | sondern es fOgt sich in die Stradenflucht ohne Yorplatz ein .

Der Haupteingang zeigt noch das alte Arkadenmaotiv mit den ﬂ@:hen Segmentbdgen .

Erst 1874 Obernahm die Stadt das bis dahin von einer privaten Initiative getragene Theater .
Es wurde in der Folge stark verandert .

Mach dem Innen-Umbau won 1880 durch Hermann Behagel gestaltete Fritz Haller 1924 das
Haus erneut um .

Trotz Aufstockung und Yerbreiterung im Stl des Neoklassizismus wurden aber Teile der
Straienfassade erhalten .

1890 wurde seitlich ein gldsermes Foyer von Rudolf Biste und Kurt Gerling angebaut |

Figure 5: MMAX2 display with sentences separated by line breaks and head line set off

can be found in file ht&.xsl theStyles folder of the HTC sample data.

As a slightly more complex structuring example, consider the Trainline data. Each Trainline dialogue
contains markables representing turn and utterance segments. The information on these levels should be
used to render the display of the dialogue as readable as possible. In addititumnthevel contains
information about speaker and number of turn, which one would also like to see on the display, although it
is not part of the actual data.

To start with, the following templates (in combination with the header anard> template described

above) demonstrate how to add this type of information to the display:

<xsl:template match="turns:markable" mode="opening">
<xsl:text>
</xsl:text>
<xsl:value-of select="mmax:startBold()"/>
<xsl:value-of select="@speaker"/>
<xsl:text>.</xsl:text>
<xsl:value-of select="@number"/>
<xslitext>: </xsl:text>
<xsl:value-of select="mmax:endBold()"/>
<xsl:text> </xslitext> <!-- This is a tab character! -->
<xsl:value-of select="mmax:startBold()"/>
<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level, @id, '[)"/>

11

<xsl:value-of select="mmax:endBold()"/>
</xsl:template>

<xsl:template match="turns:markable" mode="closing">
<xsl:value-of select="mmax:startBold()"/>
<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level, @id, 7)"/>
<xsl:value-of select="mmax:endBold()"/>
<xsl:text>
</xsl:text>
</xsl:template>

This will produce the type of display as in Figure 6. The source code for this style sheet can be found in file

=10l %]

File Settings Display Tools Info

-

B.12: [[October]

a.13: [Cctober] departing at what time from London Euston]
B.14: [i'm not sure what time the trains are do you know]

A 15: [well the trains run at 10 to the hour every haur)

B.16: [every hour #} and that'll be the 14 50 i think thE‘I%]

AA7: [arriving at 17 30]

4|

B.18: [that's right yeah]

Figure 6: MMAX2 display with one turn per line

trainline_1.xsl theStyles folder of the Trainline sample data. There are two interesting things to note in
this style sheet. First, note how tepeakermndnumberattributes in the turn level markables are accessed

by using the standard XSL notati@@speaker and@number. Second, a tab character is used to separate

the turn number from the actual turn. This way, the proper turn alignment is produced.

It is important to understand the status of the literal text (i.e. the speaker and number strings) added to the
display: Although this text consists of informatitekenfrom markables, it is part of the display only, and
cannot be annotated. Thus, the text cannot be highlighted by left-clicking and dragging the mouse (just
like markable handles), so that consequently it cannot be part of markables.

The obvious problem with the above display layout is that utterance segmentation is not properly visible.
Adding a markable handle for every utterance within a turn would be simple, but would still render every
turn in one long line. It would be preferable to have a display that gives each utterance in a separate line,
grouping together utterances from the same turn. In order to that, one simply has to add a line break before
every utterance but the turn-initial one. Adding the following templates for handling utterance markables
does just that.

<xsl:template match="utterances:markable" mode="opening">

12

<xslif test="mmax:startsMarkableFromLevel(@id, @mmax_level, 'turns’)=false">
<xsl:text>
</xsl:itext> <!-- This is a tab character! -->
</xsl:if>
<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level, @id, '[)"/>
</xsl:template>

<xsl:template match="utterances:markable" mode="closing">
<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level, @id, T)"/>
</xsl:template>

This will produce the type of display as in Figure 7. The source code for this style sheet can be found in file

=10l %]

File Settings Display Tools Info

[departing at what time from London Euston]]

-

B.14: [[i'm not sure what time the trains arg]
[do you know]]

A5 [[wel]
[the trains run &t 10 to the hour every hour]] [

B.16: [[every hour {#)]
|z that'n ke the 14 50 ithinkthen!%

AT [[arriving at 17 30]]

B.18: [[that's right] -

Figure 7: MMAX2 display with one utterance per line, grouped by turns

trainline 2.xsl theStyles folder of the Trainline sample data. The most interesting part in the above style
sheet is the call to mmax:startsMarkableFromLevel(String ID, String ownLevel, String targetLevel). This

is a boolean function that returtrsie if there is a markable on levérgetLevethat the current markable

starts i.e. whose first word is identical to the current markable’s first word,falsg otherwise. In the

latter case, a line break plus a tab is added to the display. This method call (and the call to the corresponding
mmax:finishesMarkableFromLevel(String ID, String ownLevel, String targetLevel)) can be used wherever
a standard XSL boolean-returning function can be used. Note that neither function dobswarany
markables from levefargetLevelthe current markable starts or finishes; rather, it rettnues if there is

at least onefalse otherwise.

Using markable handles for markables from different markable levels simultaneously (like in the above
example) makes it necessary to pay some attention to the markabletdeeihg For each annotated
document, this ordering is initially defined by the ordering of tievel> elements in the associated
.mmax file. By default, the ordering is such that levels of markables thdaayer units (e.g. turns) are

below levels containing markables that esallerunits (e.g. utterances). It is only with this setting that

the above style sheet will produce the desired output. The ordering of the markable levels can be changed

13

temporarily by moving them up or down in the 'Markable level control panel’. In order for changes to the
markable level ordering to take effect, the current style sheet has to be reapplied. The style sheet currently
in use can be reapplied by selecting in the main window the 'Display’ menu and then the 'Reapply current
style sheet’ menu item.

4.4 Adding Textual Markable Handles

As already mentioned in Section 4.2, markable handles need not be restricted to single characters. They
do not even have to consist liferal text only. Instead, thealues of markable attributes can be used

as handles. This has the great advantage that attributes can very easily be inspected without the need to
select each markable. Only if some error is detected, the markable has to be selected in order to correct
the error. Aftzer the markable modification in the MMAX2 attribute window has been applied, a simple
reapplication of the current style sheet suffices to also display the corrected value in the display.

Depending on how fancy the character attributes for the handles are, textual handles can be created very
easily.

4.4.1 Plain

In the following example, the template for creating tesinghandles for utterance markables has been
modified to include the value of the markablg/peattribute.

<xsl:template match="utterances:markable" mode="closing">
<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level,
@id,
concat(] ’,@type),
1)"/>
</xsl:template>

The display produced by this template (in combination with the above ones) looks as in Figure 8. The
source code for this style sheet can be found in file trainlinel theStyles folder of the Trainline
sample data. The right handle at each utterance now contains a matching closing bracket, followed by two
space characters, and then the value of the utteratygesattribute. The entire handle string is mouse-
sensitive. What is important here is that (unlike in the standard behaviour for right markable handles, cf.
Section 4.2) what is highlighted is not the right-most character, but (in this case) the first one. This is
controlled by the last parameter in the call to mmax:addRightMarkableHandle(String ownLevel, String
ownlID, String handle, int highlight). Thiighlight parameter can be used to specify the numerical
index within the handle string that is to be used for highlighting. Using a value of 1 tells MMAX2 to use
the leftmost (i.e. first) character in the handle string. If the right handle string started with e.g. one leading
space, followed by the closing brackeighlight would have to be set to 2, and so on.

Alternatively, theleft markable handle can also be enhanced with attribute values. Substituting the above
utterance templates with the following two will display ttype value at theébeginningof each utterance.

<xsl:template match="utterances:markable" mode="opening">
<xsl:if test="mmax:startsMarkableFromLevel(@id, @mmax_level, 'turns’)=false">
<xsl:text>
</xsl:text> <!-- This is a tab character! -->
</xsl:if>

14

& MMAXZ 1.0 BETA 3 Samples’ Trainline’,trainline0Zhd.mm & IEllzj

File Settings Display Tools Info

-

B.14: [[i'm not sure what time the trains are] decl
[do you know] g-yn]

A158: [[well] dm
[the trains run at 10 to the hour every hour] decl]

B.16: [[every hour {#)] frag
|and that be the 14 50 think ther] fral%]

AT [[arriving at 17 30] frag]
B.18: [[that's right] decl
[yeah] yes]
A 19 Iwhen are soll retiirninnl ookl)

Figure 8: MMAX2 display with one utterance per line, grouped by turns, and turn-type as right handle

<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level,
@id,
concat(@type,’ [),
string-length(@type)+2)"/>
</xsl:template>

<xsl:template match="utterances:markable” mode="closing">
<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level, @id, T)"/>
</xsl:template>

The display will then look as in Figure 9. The source code for this style sheet can be found in file train-
line_4.xsl theStyles folder of the Trainline sample data. Note how thighlight parameter is set
dynamically for each utterance depending on the length of the actual type string.

4.4.2 More Fancy

The markable handles described so far have been not so fancy in that they used only very simple font
attributes. More fancy handles can be created by using several font attributes within one handle, resp. by
applying certain attributes tpart of a handle only. The following pair of utterance templates will create
handles where the brackets appear in normal-sized bold font, but the uttergpesstribute value are
rendered as subscript.

<xsl:template match="utterances:markable" mode="opening">
<xslif test="mmax:startsMarkableFromLevel(@id, @mmax_level, 'turns’)=false">
<xsl:text>
</xsl:itext> <!-- This is a tab character! -->
</xsl:if>
<xsl:value-of select="mmax:addLeftMarkableHandle(@mmax_level,@id,[")"/>

15

=10l x]

File Settings Display Tools Info

AT [TFad [CTORer ||
gt [departing at what time from London Euston]]

-

B.14: [decl [i'm not sure what time the trains are)
o=yt [do you know]]

A5 [cim [well]
decl [the trains run at 10 to the hour every hour]]

B.16: [frag [ewery hour {#}]
frag Jand that'll be the 14 50§ think then!:%

AT [frag [arriving at 17 30]]

B.18: [dec! [that's right]

-

Figure 9: MMAX2 display with one utterance per line, grouped by turns, and turn-type as left handle

</xsl:template>

<xsl:template match="utterances:markable" mode="closing">

<xsl:value-of select="mmax:addRightMarkableHandle(@mmax_level,
@id,
string-length(@type)+1,
1)"/>

<xsl:text>]</xsl:text>

<xsl:value-of select="mmax:startSubscript()"/>

<xsl:value-of select="@type"/>

</xsl:value-of select="mmax:EndSubscript()">

</xsl:template>

The display will then look as in Figure 10. The source code for this style sheet can be found in file train-
line_5.xsltheStyles folder of the Trainline sample data. The main difference is in mmax:addRightMarkableHandle(St
ownLevel, String ownlID, int handleLength, int highlight). Instead of supplying the handle string itself, this

method receives only th&izeof the handle to be added. The handle itself is added as literal text, which

allows to use any type of font attributes supported by MMAX2. Note that it is important that the text

actually added is exactly as long as was specified ireitentparameter.

4.5 More Flexible Style Sheets (updated for version 1.0 beta 4)

From version 1.0 beta 4 on, there is a convenient way to define different views of a given set of base data
files and annotations without having to create an extra style sheet for each. This version introduces so-
calleduser switchesUser switches are user-defined symbols (i.e. strings) that can be associatedamith an

or off state. User switches are defined in toenmonpaths.xml file. The following code extract (taken

from the commorpaths.xml file of the HTC sample data) defines a user switch with the oarethandle

16

=101 %]

File Settings Display Tools Info

B.14: [[i'm not sure what time the trains arE]Eiecl —
[doyou know]]
A 15° [fwel]

[the trains run at 10 to the hour every hour],]

b.16: [[every hour #; .
|znd that'l be the 14 50 ithinkthenlfraﬁé

AT [[arriving at 17 SIII]frag]

B.18: [Tthat's riahfl, ~|

Figure 10: MMAX2 display with one utterance per line, grouped by turns, and turn-type as right handle,
in subscript font

and sets it initially toon.

<user_switches>
<user_switch name="coref_handle" default="on"/>
</user_switches>

For each user switch defined, a button in the 'User switches’ sub menu in the 'Display’ menu is created,
which reflects the current state of the switch. The point is that the execution of the style sheet can be made
to consider the current state of user switches. Thus, when using the style sh2eshtin the HTC data,
markable handles for theoref level will only be added if theoref handleswitch is currently set ton.

See Section 5.2 for information about how to use user switches in your own style sheets.

17

5 Function Reference (updated for version 1.0 beta 4)

This Section describes the MMAX2 extension functions that can be called from within a MMAX2 style
sheet. The extension functions are availahleddition to the standard XSL functions. For reasons of
clarity, themmax: prefix is omitted in the following. When using the functions, the mmax name space
must be supplied. Also, the mmax name space has to be declared as described in Section 3.

5.1 System Functions

System functions are those that are needed for MMAX2 to be able to create a correct display. Their use is
obligatory, and they must appear at certain pre-defined positions in a style sheet (cf. Section 3.1). System
functions are best called in tlselect parameter okxsl:value-oft> functions: This is the easiest way,

and it is feasible because if the function called is void (i.e. does not return anything), adding the function’s
return value to the output (which is whaisl:value-oft> does) simply has no effect.

e registerDiscourseElement(String ownlID)
This function must be the first to be called in thasl:template- for word elements. It is used for
tool-internal purposes.

e setDiscourseElementStart()
This function must be called immediately befetgsl:apply-templatest in the <xsl:template- for
word elements. Itis needed for creating the association between discourse elements (i.e. words) and
the display positions at which they appear.

e setDiscourseElementEnd()
This function must be called immediately aftexsl:apply-templatesf in the <xsl:template- for
word elements. Itis needed for creating the association between discourse elements (i.e. words) and
the display positions at which they appear.

5.2 Control Functions (updated for version 1.0 beta 4)

Control functions are those functions that can be used to influence the style sheet control flow. They all
return boolean values (i.e. eithtiene orfalse). They can be used wherever boolean-returning standard
XSL functions can be used, in particular in ttest attribute of <xsl:if>> and <xsl:when> functions.

Right now, there are only two such functions in MMAX2.

e startsMarkableFromLevel(String ownID, String ownLevel, String targetLevel)
This method returngrue if there is at least one markable on levaigetLevelthat the markable
with ID ownlID on levelownLevelstarts,false otherwise. One markable is said to start another
markable if both markables have the same first word.

¢ finishesMarkableFromLevel(String ownID, String ownLevel, String targetLevel)
This method returngrue if there is at least one markable on levaigetLevelthat the markable
with ID ownlD on levelownLevefinishesfalse otherwise. One markable is said to finish another
markable if both markables have the same last word.

e isOn(String switchName)
This function has beeadded in version 1.0 beta 4 It can be used to make the behaviour of a
style sheet dependent on the settings of so-calkst switchesvhich can be defined in the file

18

commonpaths.xml , and modified by the user via the MMAX2 GUI. This method returng

if the the user switch of the nanssvitchNamas currently switched ton, false otherwise. Using

this function to control style sheet control flow can reduce the number of different style sheets that
one has to write: Instead of writing e.g. three style sheets, each of which displays handles for one
level, one can now simply write one style sheet in which the display of handles is controlled by a

separate user switch for every level.

5.3 Functions for Setting Font Attributes

The following functions are available for setting attributesliteral text Literal text is text that is added to
the display by eithekxsl:text></xsl:text> or <xsl:value-oft>, incl. markable handles. These functions
should also be called in theelect parameter ok xsl:value-off> functions, cf. Section 5.1 above.

e startBold(), endBold()

startltalic(), endltalic()

startUnderline(), endUnderline()

startStrikeThrough(), endStrikeThrough()

startSubscript(), endSubscript()
e startSuperscript(), endSuperscript()

The names of the above functions are self-explanatory. Attributes can also be combined: e.g. text can be
bold and italic at the same time. However, the font attributes underline and strikethrough resp. subscript
and superscript are mutually exclusive!

5.4 Markable-Related Functions
5.4.1 Markable-Returning Functions

As with system functions (cf. Section 5.1 above), the positions at which markable-returning functions may
appear are strictly defined. Unlike system functions, however, they are not obligatory, meaning that they
can be left out if no access to markables from any levels is required (as in the simple display described
in Section 3.1). If markables are to be accessed from within the style sheet (e.g. for adding markable
handles), the following two functions have to be called exactly at the positions specified below. Since these
functions return markables (in the form of NodeSets), they must be called setbet parameter of

an <xsl:apply-templates/ call, with themode parameter set to the correct value. This value is necessary
so that the markables retrieved can be matched by the respectsigemplate- elements. Note: Calling
markable-returning functions alone will not have any effect on the display! They make only sense in
combination with<xsl:template- elements that actually process the returned markables (cf. Section 5.4.2
below).

e getStartedMarkables(String 1D)
If used, this function must be called directly after registerDiscourseElement(String ID) and directly
before setDiscourseElementStart(). Thede value must be set topening This method returns
a NodeSet of all markables that are started at the markable with the supplied ID. The markables

19

returned are inversemarkable level order: markables from lower levels are returned before mark-
ables from higher levels. If two markables from the same level start at the same position, the
longer one is returned before the shorter one. This ordering is used to ensure that the markables
are processed in an order allowing for correct embedding of markable handles.

getEndedMarkables(String 1D)

If used, this function must be called directly after setDiscourseElementEnd(ndtie value must

be set taclosing This method returns a NodeSet of all markables that are ended at the markable with
the supplied ID. The markables returned are in markable level order: markables from lower levels
are returned after markables from higher levels. If two markables from the same level start at the
same position, the longer one is returned after the shorter one. This ordering is used to ensure that
the markables are processed in an order allowing for correct embedding of markable handles.

5.4.2 Functions for Adding Markable Handles

There are several functions for adding left and right markable handles. The all have in common that they
have to be called from withircxsl:template- elements that match markable elements. Some of these
functions actually return a value (i.e. a string representing the handle to be added), some don’'t. The
preferred way to call them is in treelect parameter okxsl:value-off> functions.

— addLeftMarkableHandle(String level, String id, String handle) :
This function has to be called in a template witbde="opening" . It inserts the (potentially
multi-character) strindnandleas a markable handle for the markable with theidDon level
level The left-most character inandleis used for highlighting matching handles. The handle
is inserted by the function itself (i.e. as the return value).

— addRightMarkableHandle(String level, String id, String handle) :
This function has to be called in a template witbde="closing" . Itinserts the (potentially
multi-character) strindnandleas a markable handle for the markable with theidDon level
level The right-most character lmandleis used for highlighting matching handles. The handle
is inserted by the function itself (i.e. as the return value).

— addLeftMarkableHandle(String level, String id, String handle, int
highlight)
This function has to be called in a template witbde="opening" . Itinserts the (potentially
multi-character) strindnandleas a markable handle for the markable with theidDon level
level The character at positidrighlight (1-based) irhandleis used for highlighting matching
handles. The handle is inserted by the function itself (i.e. as the return value).

— addRightMarkableHandle(String level, String id, String handle, int
highlight)
This function has to be called in a template witlede="closing" . Itinserts the (potentially
multi-character) strindhandleas a markable handle for the markable with theidDbn level
level The character at positidnighlight (1-based) irhandleis used for highlighting matching
handles. The handle is inserted by the function itself (i.e. as the return value).

— addLeftMarkableHandle(String level, String id, int extent) :
This function has to be called in a template witiode="opening" . It inserts a (potentially
multi-character) handle of lengtixtentas a markable handle for the markable with theidD

20

on levellevel The left-most character is used for highlighting matching handles. The handle
is not inserted by the function itself: It has to be added explicitly by meansxai:text> or
<xsl:value-off> after the function call.

— addRightMarkableHandle(String level, String id, int extent) :
This function has to be called in a template witlode="closing” . It inserts a (potentially
multi-character) handle of lengixtentas a markable handle for the markable with theidD
on levellevel The right-most character is used for highlighting matching handles. The handle
is not inserted by the function itself: It has to be added explicitly by meansafl:text> or
<xsl:value-oft> after the function call.

e — addLeftMarkableHandle(String level, String id, int extent, int highlight)
This function has to be called in a template witlode="opening" . It inserts a (potentially
multi-character) handle of lengtixtentas a markable handle for the markable with theidD
on levellevel The character at positidnighlight (1-based) is used for highlighting matching
handles. The handle i®t inserted by the function itself: It has to be added explicitly by means
of <xsl:text> or <xsl:value-oft> after the function call.

— addRightMarkableHandle(String level, String id, int extent, int
highlight)
This function has to be called in a template witlode="closing” . It inserts a (potentially
multi-character) handle of lengixtentas a markable handle for the markable with theidD
on levellevel The character at positidnighlight (1-based) is used for highlighting matching
handles. The handle i®t inserted by the function itself: It has to be added explicitly by means
of <xsl:text> or <xsl:value-oft> after the function call.

5.4.3 Other Functions
This section lists miscellaneous functions that do not fit into any other section.

e addHotSpot(String text, String methodCall)
This function inserts into the display a clickable area (a so-call@dSpoj containing the textext
Clicking the hot spot in the display will cause the method specified imisthodCalto be executed.
Right now, only one method is defined to be used in hot shots.

— playwavsound
This method call can be used to create hot spots for playing .wav files associated with the
annotation. The method needs the following parameters:
x file name: The name of the file to be played.
x start: The position (in seconds) in the file at which to start playback.
x end: The position (in seconds) in the file at which to end playback.

endmust be larger thastart. Right now, the method can handle 16 kHz .wav files only.
methodCallmust be a string composed of the above parameters (separated by space) in the order

shown. E.g. to add a hot spot to play the portion of the file recording.wav from 3.763 to 6.73, the
string must look as follows: 'playwavsound recording.wav 3.763 6.73'.

60ther functions, including ones for more flexible .wav and .mp3 playback, will be added in later versions.

21

